
GENERALIZED SYZ AND HOMOLOGICAL MIRROR SYMMETRY

SIU-CHEONG LAU

Abstract. Strominger-Yau-Zaslow proposed that mirror symmetry can be understood by
T-duality. This survey gives a quick overview on SYZ mirror symmetry and Gross-Siebert
program, and focuses on a generalized approach to SYZ construction based on deforma-
tion theory of immersed Lagrangians rather than smooth tori. In interesting examples it
avoids complicated wall-crossing and constructs the mirrors which were not reached by the
traditional SYZ approach. Moreover it naturally gives a geometric functor realizing homo-
logical mirror symmetry. An open mirror principle is also exhibited by the generalized SYZ
approach.

1. j function and polygon countings for elliptic curves

Let me begin with two examples of elliptic curves with symmetries. We will see that the
j-function has a miraculous relation with certain countings of polygons in elliptic curves,
which can be explained by a generalized version of SYZ mirror symmetry in Section 3 and
Section 4.

1.1. Elliptic curve with complex multiplication by cube root of unity. Let E be the
elliptic curve with complex multiplication by the cube root of unity. The action of e2πi /3 is
given by rotation about the center of a minimal hexagon, which is labeled by a dot, in Figure
1. Let’s equip E with the flat metric descended from the Euclidean plane. We denote its
total area by t.

The quotient of E by Z3 is the orbifold projective line E/Z3 = P1
(3,3,3), which has three

orbifold points and each of the subscripts denotes the order of isotropy group of each orbifold
points. Algebraically E can be described as the elliptic curve {x3+y3+z3 = 0} ⊂ P2 quotient
by the free action of {[ζ1 : ζ2 : ζ3] ∈ P2 : ζ31 = ζ32 = ζ33 = 1, ζ1ζ2ζ3 = 1} ∼= Z3. Then P1

(3,3,3) is

the quotient of {x3 + y3 + z3 = 0} ⊂ P2 by {[ζ1 : ζ2 : ζ3] ∈ P2 : ζ31 = ζ32 = ζ33 = 1} ∼= Z2
3.

Now take a vertical line in the Euclidean plane, which descends to a circle in the elliptic
curve E. We obtain two other circles by applying the action of Z3 on E. Let L be the union
of these circles, whose lift to the universal cover of E is shown by the union of dotted lines in
Figure 1. The position of the vertical line is taken such that L is invariant under reflection
about a vertical axis passing through the three fixed points of the action by Z3. L is indeed
the lift of an immersed curve in E/Z3 constructed by Seidel [Sei11], and we will get back to
this point in Section 3.

We count the number of polygons in E bounded by L, where each corner of a polygon
is required to be an angle of a minimal triangle. The requirement is to ensure ‘weakly
ubobstructedness’ of the corresponding deformations. For instance, hexagon is not allowed
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Figure 1. Polygon countings in the elliptic curve E. The dotted lines show
the lift of L in the universal cover. The center of each minimal hexagon, which
is labeled by a dot, is a fixed point of the Z3-action.

because its corners are not angles of any minimal triangles. Indeed in this case all such
polygons are triangles.

Naively the count simply equals to∞, because there are infinitely many triangles. In order
to make sense of the counting we need to decorate each polygon by the following data:

(1) Boundary marked point. Fix a generic point p in L. It is marked by one of the
small crosses in Figure 1. We always require the boundary of a polygon to be counted
to pass through the point p.

(2) Monomials. We label the self-intersection points of L by either x, y or z as in Figure
1. In the figure they are marked as a tiny solid triangle, hollow triangle and solid
square respectively. Then the vertices of each polygon are labelled by x, y or z, and
hence each polygon β is attached with a monomial z∂β. In this case the monomial
z∂β attached to a polygon is either xyz, x3, y3 or z3.

(3) Areas. Let A(β) be the area of a polygon β, and we take T β := exp(−A(β)). Let α
be the area of a minimal triangle. (Monomial attached to a minimal triangle is xyz.)
The area of any other triangle is an integer multiple of α. In other words, for any
triangle β we have T β = (Tα)k for some k ∈ N. Moreover,

T := Tα = exp

(
−t
24

)
where we recall t denotes the area of the elliptic curve.

(4) Signs. Fix a Z3-invariant orientation of L as shown in Figure 1. Moreover, we apply
the Z3-action and Deck transformations on the generic chosen point p ∈ L, and obtain
all the small red crosses shown in Figure 1. This fixes a Z3-invariant spin structure
on L. Then each triangle β is attached with the sign sign(β) := (−1)r+s, where r is
the number of edges whose orientations are reversed of the boundary counterclockwise
orientation of β, and s is the number of red crosses on the boundary.
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Define the generating function of polygon counting to be

(1.1) W :=
∑
β

sign(β)T βz∂β

where the sum is over all the triangles whose boundaries pass through the generic point p. It
takes the form

W = −Txyz − T 9x3 − T 9y3 + T 9z3 + . . .

= φ(T )(−x3 − y3 + z3)− ψ(T )xyz

where φ and ψ are explicit convergent series defined by

φ(T ) =
∞∑
k=0

(−1)3k+1(2k + 1)T 3(12k2+12k+3),

ψ(T ) = −T +
∞∑
k=1

(
(−1)3k+1(6k + 1)T (6k+1)2 + (−1)3k(6k − 1)T (6k−1)2

)
.

It is easy to perform a change of coordinates in (x, y, z) to arrange W to be

(x3 + y3 + z3)− ψ(T )

φ(T )
xyz.

Now comes the miracle. Let

(1.2) i333(σ) :=
−σ3(−216 + σ3)3

(27 + σ3)3
.

Then one can directly check that

(1.3) i333

(
−ψ(T )

φ(T )

)
= j(q) =

1

q
+ 744 + 196884q + 21493760q2 + . . .

where q = exp(−t) = T 24 is the Kähler parameter of the elliptic curve E.

The function i333 is defined in Saito’s theory for elliptic singularities. It has the defining
property that

(1.4) i333(σ(Q)) = j(q = Q3)

where q(σ) is (exponential of) the flat coordinate on the complex moduli of the mirror elliptic
curve

Ě = {x3 + y3 + z3 + σxyz = 0} ⊂ P2,

Q(σ) = q1/3(σ), and σ(Q) is the inverse function of Q(σ). q(σ) is also known as the mirror
map, which takes the form

q(σ) = exp

(
2πi · πB(σ)

πA(σ)

)
where πA and πB are certain periods of Ě, and they satisfy the Picard-Fuchs equation

u′′ +
3σ2

σ3 + 27
u′ +

σ

σ3 + 27
u = 0.
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The readers can find more details about the Frobenius structures in [MR, Section 6.2]. σ(Q)
is known as the inverse mirror map. Explicitly

(1.5) σ(Q) = 3 +

(
η(Q)

η(Q8)

)3

=
1

Q
(1 + 5Q3 − 7Q6 + . . .)

where η(Q) = Q1/24
∏

n≥1(1 − Qn) is the Dedekind eta function. Q = q1/3 is understood as
the Kähler parameter of the elliptic curve quotient E/Z3 (whose area is 1/3 of that of E).

With the above understanding, Equation (1.3) can be reformulated as follows:

Theorem 1.1 (Theorem 1.6 of [CHL17]). The following equality holds for the inverse mirror
map and the counting functions of the elliptic curve E with a Z3 symmetry:

σ(Q = T 8) =
−ψ(T )

φ(T )
.

Theorem 1.1 gives an enumerative meaning of the inverse mirror map σ(Q), which is
expressed in terms of the Dedekind eta function by Equation (1.5), by counting triangles
bounded by L. Here I want to emphasize that this is not just a coincidence. Indeed it gives
a guiding principle: the mirror, the mirror map, and also the mirror functor realizing homo-
logical mirror symmetry can all be geometrically constructed using (immersed) Lagrangian
deformation theory.

1.2. Elliptic curve with complex multiplication by sixth root of unity. Here is an-
other example in order to convince you that Theorem 1.1 is an instance of a general principle,
rather than just a coincidence.

Let E be the elliptic curve with complex multiplication by the cube root of unity as in
the last section. This time we consider Z6 symmetry rather than Z3, and consider a specific
immersed curve L in E invariant under Z6 whose lift in the universal cover R2 is shown by
dotted curves in Figure 2. The action of e2πi /6 is given by rotation about any of the points
labelled by tiny circles in the figure. Again we equip E with the flat metric descended from
the Euclidean plane, and denote its total area by t. The quotient of E by Z6 is the orbifold
projective line E/Z6 = P1

(2,3,6). Similarly E and E/Z6 can be described algebraically by using

the equation x2 + y3 + z6 = 0.

Then we count polygons bounded by L in the same way as in the last section, and obtain
a generating function of polygon counting W (see Equation (1.1)). A minimal triangle is
shown in Figure 2 which is labelled by the monomial xyz. Again in the counting we exclude
any polygon which has a corner not being an angle of a minimal triangle. The area of each
minimal triangle is taken to be t/48, and we let T = e−t/48.

This time more types of polygons show up, namely triangles, trapezoids, parallelograms,
pentagons and hexagons. Some of them are shown in Figure 2. W takes the form

W = T 6x2 − Txyz + cy(T )y3 + cz(T )z6 + cyz2(T )y2z2 + cyz4(T )yz4

where cy, cz, cyz2, cyz4 are certain series in T (see Theorem 9.1 of [CHKL17] for the explicit
expression).
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Figure 2. Polygon countings in the elliptic curve E. The dotted lines show
the lift of L in the universal cover.

By a change of coordinates in (x, y, z), W can be arranged to be

x2 + y3 + z6 − s(T )yz4

for an explicit series s(T ). Let

(1.6) i236(σ) := 1728 · 4σ3

27 + 4σ3
.

Then one can directly check that

(1.7) i236(s(T )) = j(q)

where q = exp(−t) = T 48 is the Kähler parameter of the elliptic curve E.

The function i236 is defined in Saito’s theory for elliptic singularities. It has the defining
property that

(1.8) i236(σ(Q)) = j(q = Q6)

where q(σ) is (exponential of) the flat coordinate on the complex moduli of the mirror elliptic
curve

Ě = {x2 + y3 + z6 + σyz4 = 0} ⊂ P2(2, 3, 6)

around σ = −3/22/3, Q(σ) = q1/6(σ), and σ(Q) is the inverse function of Q(σ). q(σ) is also
known as the mirror map, which takes the form

q(σ) = exp

(
2πi · πB(σ)

πA(σ)

)
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where πA and πB are certain periods of Ě. The readers can find more details about Frobenius
structures in [MS16, Section 5.5]. σ(Q) is known as the inverse mirror map. Explicitly

(1.9) σ(Q) =
−3

22/3

(
1 + 576Q6 + 235008Q12 + 109880064Q18 + 53449592832Q24 + . . .

)
Q = q1/6 is understood as the Kähler parameter of the elliptic curve quotient E/Z6 (whose
area is 1/6 of that of E). One can check explicitly that s(T ) has the same expression as the
inverse mirror map σ(Q) (where Q = T 8).

The same procedure can be carried out for the elliptic curve with complex multiplication
by fourth root of unity to express the corresponding inverse mirror map as polygon countings.
The readers are referred to [CHKL17] for details.

The construction of W in Equation (1.1), the generating function of polygon countings,
indeed work in a much more general context rather than just for elliptic curves with complex
multiplications. We call this the generalized SYZ construction. Moreover in several interesting
classes of geometries, W serves as the Landau-Ginzburg mirror, and there exists a canonical
functor from the Fukaya category to the category of matrix factorizations of W , which realizes
homological mirror symmetry. In the following we will give a short overview on SYZ mirror
symmetry before introducing the generalized SYZ approach.

2. SYZ mirror construction

This section gives a quick review on the development of SYZ mirror symmetry in the last
two decades.

2.1. Symplectic approach to SYZ. For a pair of mirror Calabi-Yau manifolds X and
X̌, the Strominger-Yau-Zaslow (SYZ) conjecture [SYZ96] asserts that there exist special
Lagrangian torus fibrations µ : X → B and µ̌ : X̌ → B which are fiberwise-dual to each
other. In particular, this suggests an intrinsic construction of the mirror X̌ by fiberwise
dualizing a special Lagrangian torus fibration on X. This process is called T-duality.

The SYZ program has been carried out successfully in the semi-flat case [KS01, LYZ00,
Leu05], where the discriminant loci of special Lagrangian torus fibrations are empty (i.e. all
fibers are regular) and the base B is a smooth integral affine manifold. On the other hand,
mirror symmetry has been extended to non-Calabi-Yau settings, and the SYZ construction
has been shown to work in the toric case [Aur07, CL10], where the discriminant locus appears
as the boundary of the base B (so that B is an integral affine manifold with boundary).
Topological evidences for SYZ mirror symmetry have been found by [Gro01b].

Beyond the semi-flat and toric cases, there are two main difficulties in order to carry
out the SYZ construction. First, constructing Lagrangian fibrations is a rather difficult
task. [Zha00] constructed topological torus fibrations for Calabi-Yau hypersurfaces in toric
varieties. [Rua01, Rua02, CBM09] constructed Lagrangian fibrations for the quintic Calabi-
Yau. Yet constructing Lagrangian fibrations for general Calabi-Yau manifolds (say, complete
intersections in toric varieties) is still an open problem. Secondly, Lagrangian fibrations
often have singular fibers. The semi-flat complex manifold obtained by fiberwise dualizing
the special Lagrangian torus fibration away from discriminant loci is not the correct mirror.
The speculation of [Fuk05] suggested that the correct mirror should be obtained by taking
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quantum corrections on the semi-flat complex manifold, which should be given by certain
open Gromov-Witten invariants, which are roughly speaking countings of holomorphic discs
emanated from the singular fibers.

Quantum corrections can be made rigorous in the symplectic approach for non-compact
toric Calabi-Yau manifolds [CLL12]. They serve as local patches of compact Calabi-Yau
varieties and give rise to local mirror symmetry, which has been intensively studied in a lot
of literatures [CKYZ99, Tak01, KZ01, GZ02, Hos00, Hos06, FJ05, KM10, Sei10]. Moreover,
Lagrangian fibrations for this class of manifolds were constructed by [Gol01, Gro01a]. Since
they are toric, their open Gromov-Witten invariants were defined by [CO06, FOOO10]. In
this case SYZ mirror construction can be carried out using symplectic geometry [CLL12].
The mirror constructed is expressed in terms of open Gromov-Witten invariants.

Wall-crossing of open Gromov-Witten invariants studied in [Aur07] plays the key role in
the construction of [CLL12]. Roughly speaking it is the phenomenon that there is a chamber
structure on the base of the Lagrangian fibration, such that open Gromov-Witten invariants
remain the same within one chamber but change drastically across the chamber. See Figure
3 for an instance of wall-crossing phenomenon. For the case of toric Calabi-Yau manifolds
of dimension n, there are two chambers in the base, and wall-crossing across the chamber is
determined by a function g(q, z1, . . . , zn−1). Then the SYZ mirror takes the form

uv = g(q, z1, . . . , zn−1).

Wall

Figure 3. An example of wall-crossing. There is only one holomorphic disc
below the wall, but above the wall another holomorphic disc shows up.

SYZ construction using symplectic geometry for blowups of toric varieties was carried out
by [AAK16], which can be regarded as the reverse direction of [CLL12].

[Lau14] gave another class of geometries that SYZ can be carried out using symplectic
geometry. The paper constructed the SYZ mirrors of smoothings of toric Gorenstein singu-
larities, whose Lagrangian fibration was constructed in [Gro01a]. It was also proved that SYZ
mirrors in conifold transitions are related by analytic continuation and change of coordinates
on the Kähler moduli.

2.2. Tropical approach to SYZ. While the symplectic approach to SYZ works for interest-
ing classes of geometries discussed above, it is still quite restrictive due to the two difficulties
mentioned, namely construction of Lagrangian fibrations and quantum corrections.

Based on tropical geometry [Mik05, Mik06], affine geometry and wall-crossing [KS01,
KS06], Gross-Siebert [GS11a] gave an algebraic version of SYZ construction without solving
the above two problems. [GS11b] gave an excellent exposition to their construction. Instead
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of considering Lagrangian fibrations, they considered a toric degeneration and constructed
an affine manifold from the intersection complex of the central fiber of degeneration.

Then they worked on walls attached with the so-called ‘slab functions’, which play the role
of open Gromov-Witten invariants in this tropical setting. The key phenomenon is scattering
when two walls hit each other. The effect of scattering can be computed order-by-order,
and as a result a family of varieties is constructed order by order which should serve as the
mirror. Roughly speaking, the variety is a bunch of toric charts corresponding to connected
components of the complement of walls, glued to each other according to the slab functions.
Log geometry plays an essential role to compute GW invariants in their theory of toric
degeneration [GS06, GS10, GS13].

In the surface case [GHK11] constructed mirrors of log Calabi-Yau surfaces (which are
basically pairs (X,D) for normal-crossing divisors D ∈ | − KX |), by the further study of
theta functions which should be mirror to Lagrangian intersections.

Remark 2.1. In [GS14] the mirror of a toric Calabi-Yau manifold is also constructed by using
the Gross-Siebert program, which is expressed in terms of slab functions. [Lau15] proved
that the mirrors produced by these two different approaches actually equal to each other.
The proof is based on the open mirror theorem of [CCLT16] and a tropical interpretation of
hypergeometric functions.

A correspondence between counting of certain rational curves and tropical curves in the
toric case was established by [NS06]. By similar technique countings of certain holomorphic
discs and tropical discs in the toric case was established by [Nis12].

The advantage of the tropical approach of Gross-Siebert is that toric degeneration is easy
to construct, and so their scheme works for very general situations. On the other hand, the
construction is rather complicated to implement in actual situations. Moreover homological
mirror symmetry is rather unclear in the tropical setup. For instance, the Fermat quintic

X = {x50 + . . .+ x54 = 0} ⊂ P4

has mirror being its quotient by (Z/5)3. However quantum corrections involved in Gross-
Siebert program for the Fermat quintic are overwhelmingly complicated and occur up to
infinite order.

On the other hand, homological mirror symmetry for Fermat-type hypersurfaces was proved
by Sheridan [She15, She11], based on the previous work of Seidel [Sei11] on homological mirror
symmetry for genus-two curves. One key ingredient is an explicit Lagrangian immersion
which generates the Fuakya category. This motivates the idea of generalized SYZ [CHL17]
introduced in the next section, which avoids complicated wall-crossing and gives a natural
functor realizing homological mirror symmetry in some important classes of geometries.

3. Generalized SYZ construction

The main idea is to choose a Lagrangian (immersion) L and use its deformation theory to
construct a Landau-Ginzburg model W . The procedures are as follows:

(1) Construct a suitable Lagrangian immersion L. This should be oriented and (relatively)
spin. For simplicity it is assumed to have transverse self-intersections. For the purpose
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of homological mirror symmetry we may want to require L split-generates the Fukaya
category, although we do not need such an assumption in the construction. L plays
the role of a Lagrangian fibration in the original SYZ approach.

(2) Take a (weakly-unobstructed) deformation space V of L as the mirror space. It plays
the role of semi-flat mirror in the original SYZ approach. Note that deformations of
an immersed Lagrangian not just include the usual Lagrangian deformations but also
smoothings at immersed points.

(3) The quantum corrections are given by countings of J-holomorphic polygons bounded
by L. They form a generating function W defined by Equation (1.1). Then (V,W )
forms a Landau-Ginzburg model, and we call this a generalized SYZ mirror.

One advantage of such a construction is that it avoids complicated scattering and gluing,
and so the Landau-Ginzburg model (V,W ) comes out in a direct and natural way. This also
matches the general philosophy that Landau-Ginzburg model is easier to work with than
Calabi-Yau model (and it is an important topic to study the correspondence between the
two).

Elliptic curves with complex multiplications described in Section 1 fit into this setting.
Consider the orbifold projective line P1

a,b,c (a, b, c ≥ 1). The first example in Section 1 corre-

sponds to E/Z3 = P1
(3,3,3), and the second example corresponds to E/Z6 = P1

(2,3,6). One has

the following classification in relation with (affine) Dynkin diagram, where χ := 1
a

+ 1
b

+ 1
c
−1.

Spherical (χ > 0) Planar (χ = 0) Hyperbolic (χ < 0)

Type A Type D Type E Ẽ6 Ẽ7 Ẽ8 1
a

+ 1
b

+ 1
c
< 1

(1, b, c) (2, 2, k), k ≥ 2 (2, 3, k), k = 3, 4, 5 (3,3,3) (2,4,4) (2,3,6)

Consider the Lagrangian immersion L ⊂ X shown in Figure 4, which was constructed by
[Sei11] for the purpose of proving homological mirror symmetry for genus-two Riemann surface
(and used by [Efi12] for proving homological mirror symmetry for higher-genus Riemann
surfaces). L is called to be the Seidel Lagrangian. It has three immersed points, and they
give three independent directions of (weakly) unobstructed deformations labelled by x, y, z.
Thus the mirror space in our construction is V = C3 with coordinates (x, y, z), and the
generating function W is defined over C3. In Section 1, the curve L is the lift of the Seidel
Lagrangian from P1

(3,3,3) (or P1
(2,3,6)) to the elliptic curve.

In [CHL17] we formulated this mirror construction using a Lagrangian immersion, and
applied it to construct the generalized SYZ mirror (C3,W ) of the orbifold sphere P1

a,b,c.
The Seidel Lagrangian was used in the construction. One important thing is, the three
independent directions of deformations labelled by x, y, z are weakly unobstructed, due to
cancellations between holomorphic polygons and its reflection about the equator. Weakly
unobstructedness is important to make sure that W is well-defined (independent of choice
of the boundary marked point). In [CHL] we formulated a noncommutative version of the
construction to cook up more solutions to the weakly unobstructedness condition and make
it more flexible.

Let’s compute the leading order terms of W . There is a minimal triangle bounded by L
with x, y, z as vertices, which is the shaded region shown in Figure 4. The corresponding
monomial is −Txyz, where T = exp(−A) and A is the area of the minimal triangle. We
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Figure 4. The Seidel Lagrangian. Two pictures show the same Lagrangian
immersion from different viewpoints. The three dots on the equator are orbifold
points of an orbifold sphere. The shaded triangle on the right contributes to
the term xyz of the Landau-Ginzburg mirror.

may always take Q = T 8, where Q is the Kähler parameter of P1
(a,b,c). Moreover L bounds an

a-gon with x as vertices, a b-gon with y as vertices, and a c-gon with z as vertices. Hence W
takes the form

W = −Txyz + T 3axa + T 3byb + T 3czc + . . .

In [CHKL17] we give an algorithm to compute the open Gromov-Witten potential of P1
(a,b,c)

order by order. As a consequence, we derive the convergence of the open Gromov-Witten
potential for all a, b, c. Notice that when 1

a
+ 1

b
+ 1

c
< 1, P1

(a,b,c) is of general type (and in

particular its Riemann surface covers have genus bigger than one). This gives a first class
of general-type manifolds whose open Gromov-Witten potentials can be computed and are
convergent.

P1
a,b,c can be written as a G-quotient of a Riemann surface Σ. Then the generalized SYZ

mirror of the Riemann surface Σ is also given by the same superpotential W , but over the
quotient C3/Ĝ where Ĝ is the group of characters of G (which is just isomorphic to G itself
because G is Abelian). When 1/a + 1/b + 1/c ≥ 1, which corresponds to the case that Σ
has genus less than or equal to one, the superpotential W has finitely many terms; when
1/a+ 1/b+ 1/c < 1, which corresponds to the case that Σ has genus greater than one, it has
infinitely many terms. Thus the construction gives the generalized SYZ mirror of a Riemann
surface Σ.

One can also carry out generalized SYZ for (quotients of) Fermat-type hypersurfaces

X̃ =
{

[z0 : . . . : zn+1] ∈ Pn+1 : zn+2
0 + . . .+ zn+2

n+1 = 0
}

using the Lagrangian immersion constructed by Sheridan [She11]. There are n degree-one
independent deformation directions labelled by x1, . . . , xn. Assuming that they are weakly
unobstructed (which is not yet verified), we obtain a generalized SYZ mirror (Cn+2/Zn+2,Wn)
of Fermat-type hypersurfaces where Wn has leading terms

n∑
i=1

xni + σ(q)x1 . . . xn.
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4. The open mirror principle

Whenever SYZ construction can be carried out (in either one of the three approaches
introduced in the previous sections), one obtains a map from the Kähler moduli to the mirror
complex moduli, which is called the SYZ map. On the other hand, mirror map, which goes
from the mirror complex moduli to the Kähler moduli, plays a central role in mirror symmetry
and was well studied in literatures. The mirror map is obtained by solving a PDE system
called Picard-Fuchs equations. Its inverse, which also goes from the Kähler moduli to the
mirror complex moduli, is called the inverse mirror map.

Open mirror principle. The SYZ map equals to the inverse mirror map.

Conjecture of this type was first proposed by Gross-Siebert [GS11a, Conjecture 0.2]. Namely,
they conjectured that the formal deformation parameter in their reconstruction should be a
‘canonical’ coordinate of the mirror family. Moreover the slab functions involved in their
reconstruction of mirror should have enumerative meaning in terms of counting certain holo-
morphic discs, and they found evidences in the case of KP2 based on the work of [CKYZ99]
(although counting of holomorphic discs were not clear at that time).

In [CLL12] the principle was precisely formulated into a conjecture for toric Calabi-Yau
manifolds using the symplectic approach to SYZ, where the SYZ map is written in terms of
open Gromov-Witten invariants for discs of Maslov index two defined by [CO06, FOOO10,
FOOO09a, FOOO09b]. In [Cha11], a relation between open and closed invariants for certain
subclasses of toric Calabi-Yau manifolds was established, and and [LLW11] established strong
evidences of the conjecture. [LLW12] proved the conjecture for toric Calabi-Yau surfaces,
which are resolutions of An singularities, and [CLT13] proved the conjecture for the total space
of the anticanonical line bundle of a toric Fano manifold. [CL14] proved the conjecture for
every compact toric semi-Fano surfaces. Finally, the conjecture was proved in full generality
for compact toric semi-Fano manifolds in [CLLT17], and for toric Calabi-Yau orbifolds by
[CCLT16]. We call it to be open mirror theorem, which gives an effective way to compute
the open Gromov-Witten invariants.

KP2 is the best example to illustrate the open mirror principle for toric Calabi-Yau man-
ifolds. In this case the SYZ mirror constructed in [CLL12] is the local Calabi-Yau defined
by {

(u, v, x, y) ∈ C2 × (C×)2 : uv =

(
∞∑
k=0

nβ0+klq
k

)
+ x+ y + qx−1y−1

}
where nβ0+kl are one-pointed open Gromov-Witten invariants of the disc class β0 + kl, l is
the line class of P2 ⊂ KP2 and q is the Kähler parameter of l. See Figure 5.

By the open mirror theorem of [CLT13, CCLT16], We have the equality

∞∑
k=0

nβi+klq
k = exp g(q̌(q))

where

g(q̌) =
∑
l>0

(−1)3l
(3l − 1)!

(l!)3
q̌l
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s
S

Figure 5. KP2 . The figure on the right shows a representative of the disc
class β0 + l.

and q = q̌ exp(3g(q̌)) is the mirror map (and q̌(q) is the inverse mirror map). Explicitly
∞∑
k=0

nβ0+klq
k = 1− 2q + 5q2 − 32q3 + 286q4 − 3038q5 + 35870q6 − . . . .

Thus it gives an effective way to compute nβ0+kl, which are all the non-trivial open Gromov-
Witten invariants.

By a change of coordinates in (u, v, x, y), the mirror defining equation above can be re-
arranged as

uv = 1 + x+ y + q̌(q)x−1y−1.

Hence we see that the SYZ map coincides precisely with the mirror map q̌(q).

The open mirror principle was used to derive an open version of crepant resolution theorem
for semi-Fano toric orbifolds in [CCLT14] and toric Calabi-Yau orbifolds [CCLT16]. More-
over, based on the open mirror theorem of [CCLT16] and a combinatorial understanding of
hypergeometric functions (in relation with tropical geometry), [Lau15] verified the conjecture
of Gross-Siebert mentioned above for toric Calabi-Yau manifolds.

Now consider the generalized SYZ construction explained in Section 3. Recall from Section
1 that the generalized SYZ mirror of P1

(3,3,3) = E/Z3 is

(x3 + y3 + z3)− ψ(T )

φ(T )
xyz.

Thus the SYZ map in this case is by definition −ψ(T=Q1/8)

φ(T=Q1/8)
. By Theorem 1.1, the inverse

mirror map σ(Q) of the elliptic curve quotient E/Z3 equals to the SYZ map −ψ(Q1/8)

φ(Q1/8)
.

Similarly, the generalized SYZ mirror of P1
(2,3,6) = E/Z6 is

(x2 + y3 + z6)− s(T )yz4

where s(T ) is written in terms of polygon countings (see Figure 2). The generalized SYZ
map is by definition s(T ). Both the inverse mirror map σ(Q) and the generalized SYZ map
s(T ) takes the form (where Q = T 8)

−3

22/3

(
1 + 576Q6 + 235008Q12 + 109880064Q18 + 53449592832Q24 + . . .

)
Thus the miraculous relations between j function and polygon countings explained in

Section 1 are instances of the big picture given by the open mirror principle. The generalized
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SYZ appraoch gives an enumerative meaning of the inverse mirror map of (quotients of)
elliptic curves.

5. Mirror functor

Homological mirror symmetry conjecture by Kontsevich [Kon95] asserts that for a pair of
mirror manifolds (X, X̌), the derived Fukaya category of Lagrangian submanifolds of X is
equivalent to the derived category of coherent sheaves of X̌.

More generally the mirror of X is a Landau-Ginzburg model W , which is a holomorphic
function rather than a manifold, when X is not required to be Calabi-Yau. Homological
mirror symmetry still makes sense by considering Fukaya-Seidel category of W [Sei08] (in
place of Fukaya category) or category of matrix factorizations of W [Eis80, Orl04] (in place
of derived category of coherent sheaves). In particular Lagrangian submanifolds of X should
correspond to matrix factorizations of W .

The study of homological mirror symmetry leads to many new insights to Fukaya category
and computational techniques for proving the conjecture in various cases, for instance see
[Abo06, Abo09, AP01, Cha13, Sei11, FLTZ11, FLTZ12, She11, She15]. On the other hand,
the main stream of the study of homological mirror symmetry is comparing generators and
their relations (hom spaces) on both sides. This does not explain where homological mirror
symmetry comes from geometrically.

Our generalized version of SYZ construction naturally gives an A∞-functor LML from the
Fukaya category of X to the category of matrix factorization of W and hence explains the
geometric origin of homological mirror symmetry:

Theorem 5.1 (Theorem 1.2 of [CHL17]). Let W be the generalized SYZ mirror of X. We
have an A∞-functor

LML : Fuk λ(X)→MF(W − λ).

Here, Fuk λ(X) is the Fukaya category of X (as an A∞-category) whose objects are weakly
unobstructed Lagrangians with potential value λ, andMF(W−λ) is the dg category of matrix
factorizations of W − λ.

The functor in the object level can be explained as follows. Recall that we have fixed
a reference Lagrangian (immersion) L for the construction of W . To transform a (weakly
unobstructed) Lagrangian brane L to a matrix factorization, we take the Lagrangian Floer
‘complex’ (H, δ) between L and L, where is basically the vector space formally spanned by

the intersection points of L and L, and δ = mL,L
1 is the Floer differential obtained by counting

strips between two intersection points. Actually H is not a complex: by the A∞ relations
the differential mL,L

1 squares to W − λ rather than 0, where λ is the potential value of L,
that is mL

0 = λ · 1L. By definition (H, δ) gives a matrix factorization of W . It turns out that
this corresopndence between objects determines an A∞ functor, which is rather similar to the
Hom functor in Yoneda embedding.

The work of Tu [Tu15] also constructed a functor for homological mirror symmetry based
on Fourier-Mukai transform and Koszul duality. The main difference between [CHL17] and
[Tu15] is that [CHL17] studied the formal deformations of a general Lagrangian (immersion),
while [Tu15] studied Lagrangian torus fibrations. [CHL17] focused on the localized aspect of
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the functor (and ‘globalize’ the functor using group actions), while [Tu15] focused on sheaf
theoretical aspect of the functor. In particular [Tu15] discussed the gluing of the functor
over local patches away from singular fibers of the Lagrangian torus fibration. He applied his
technique to toric Fano manifolds and obtain generating matrix factorizations when dim ≤ 2.
In [CHL14] the localized mirror functor was applied to derive explicit generating matrix
factorizations of a Laurent polynomial in all dimensions, which are described in the next
section.

6. Homological mirror symmetry for orbifold spheres

By using the mirror functor introduced in the previous section, we deduce homological
mirror symmetry for X = P1

a,b,c.

Theorem 6.1 (Theorem 1.5 of [CHL17]). Let X = P1
a,b,c,L the Seidel Lagrangian and W

its generalized SYZ mirror. Assume 1
a

+ 1
b

+ 1
c
≤ 1. The A∞-functor LML in Theorem 5.1

derives an equivalence of triangulated categories

Dπ(Fuk(P1
a,b,c))

∼= Dπ(MF(W )).

The reason for the restriction 1
a

+ 1
b

+ 1
c
≤ 1 is to ensure that W has an isolated singularity

at the origin. In the Fano case 1
a

+ 1
b

+ 1
c
> 1, W gets ‘Morsified’, meaning that its critical

points get dispersed from origin. The technique of proving homological mirror symmetry will
be different (although the principle of using the mirror functor basically is the same).

One key ingredient is computation of the matrix factorization LML(L). It turns out that
it equals to

(6.1)
(∧∗

〈X, Y, Z〉, xX ∧ (·) + yY ∧ (·) + zZ ∧ (·) + wx ιX + wy ιY + wz ιZ

)
,

up to some non-trivial change of coordinates, where xwx + ywy + zwz = W . For instance,
when (a, b, c) = (3, 3, 3),

wx =x2
∞∑
k=0

(−1)k+1(2k + 1)T (3(2k+1))2

+ yz

(
−T +

∞∑
k=1

(−1)k+1
(

(2k + 1)T (6k+1)2(T )− (2k − 1)T (6k−1)2(T )
))

,

wy =− y2
∞∑
k=0

(−1)k(2k + 1)T (3(2k+1))2 − xz
∞∑
k=1

(−1)k+1
(

2kT (6k+1)2(T )− 2kT (6k−1)2(T )
)
,

wz =z2
∞∑
k=0

(−1)k+1(2k + 1)T (3(2k+1))2 + xy
∞∑
k=1

(−1)k+1
(

2kT (6k+1)2(T )− 2kT (6k−1)2(T )
)
.

This type of matrix factorizations was proved to split-generates the derived category of matrix
factorizations by Dyckerhoff [Dyc11]. On the other hand L split generates the derived Fukaya
category, and hence homological mirror symmetry follows.
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Another half of homological mirror symmetry, which is the equivalence between the derived
category of P1

(a,b,c) and the Fukaya-Seidel category of its Landau-Ginzburg mirror xa + yb +

zc − σxyz, is formulated by Takahashi [Tak10] and studied by [Ued06, Kea15].

7. Matrix factorizations for toric mirrors

The Lagrangian L that we start with in the construction of genearlized SYZ mirror and
mirror functor can be taken to be smooth. In particular, we can take L to be a smooth
torus, which is closer to the original setting of SYZ. This simple choice of L already gives
some interesting results. In [CHL14], we applied our functor to moment-map fibers of toric
manifolds and constructed generators of the category of matrix facotorizations of a Laurent
polynomial

W =
m∑
i=1

ciz
vi

which are mirror to critical moment-map fibers of the mirror toric manifold (we have omitted
several technical assumptions here; see [CHL14] for the precise statements). Let z be the
critical points of W , and we assume their values of W are pairwise distinct. The generators are
one-to-one corresponding to the critical points, and they take the explicit following expression
(for a fixed z):

(7.1) R(l) =

[(
n∑
i=1

(zi − zi)ei∧

)
+

(
m∑
i=1

ci

n∑
j=1

αijιej

)]
z=z(l)

where αij = 0 when vi,j = 0,

αij =z
vi,1
1 . . . zvi,nn z−1j

(∏
l 6=j

z
−δ(−1,si,l)
l

)(∏
l 6=j

z
−δ(1,si,l)
l

)((∏
l>j

z
|si,l|
l

)(∏
l<j

z
δ(si,l,−1)
l z

δ(si,l,1)

l

)

+

(∏
l 6=j

z
|si,l|
l

)
vi,j−1∑
p=1

(
zj
zj

)p∏
l 6=j

(
zl
zl

)si,l⌊p∣∣∣∣ vi,lvi,j

∣∣∣∣⌋
when si,j = 1, and

αij =z
vi,1
1 . . . zvi,nn z−1j

(∏
l 6=j

z
−δ(−1,si,l)
l

)(∏
l 6=j

z
−δ(1,si,l)
l

)((∏
l>j

z
|si,l|
l

)(∏
l<j

z
δ(si,l,1)

l z
δ(si,l,−1)
l

)

+

(∏
l 6=j

z
|si,l|
l

) |vi,j |−1∑
p=1

(
zj
zj

)p∏
l 6=j

(
zl
zl

)si,l⌊p∣∣∣∣ vi,lvi,j

∣∣∣∣⌋
when si,j = −1.

Chan-Leung [CL12] and Cho-Hong-Lee [CHL12] derived the matrix factorization mirror
to the Clifford torus of P2 and of P1 × P1 respectively from SYZ arguments. The general
expression here agrees with their results (through some simple change of coordinates).
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